On the Adaptivity Gap in Two-Stage Robust Linear Optimization under Uncertain Constraints

نویسندگان

  • Pranjal Awasthi
  • Brian Y. Lu
چکیده

In this paper, we study the performance of static solutions in two-stage adjustable robust packing linear optimization problem with uncertain constraint coefficients. Such problems arise in many important applications such as revenue management and resource allocation problems where demand requests have uncertain resource requirements. The goal is to find a two-stage solution that maximizes the worst case objective value over all possible realizations of the second-stage constraints from a given uncertainty set. We consider the case where the uncertainty set is column-wise and constraint-wise (any constraint describing the set involve entries of only a single column or a single row). This is a fairly general class of uncertainty sets to model constraint coefficient uncertainty. We show that the two-stage adjustable robust problem is Ω(log n)-hard to approximate. On the positive side, we show that a static solution is an O ( log n·min(logΓ, log(m+n)) ) -approximation for the two-stage adjustable robust problem where m and n denote the numbers of rows and columns of the constraint matrix and Γ is the maximum possible ratio of upper bounds of the uncertain constraint coefficients. Therefore, for constant Γ , surprisingly the performance bound for static solutions matches the hardness of approximation for the adjustable problem. Furthermore, in general the static soluV. Goyal is supported by NSF Grant CMMI-1201116, CMMI-1351838 (CAREER), Google Faculty Research Award and IBM Faculty Award. B. Lu is supported by NSF Grant CMMI-1201116. Pranjal Awasthi Computer Science Department, Princeton University NJ 08540 [email protected] Vineet Goyal Dept. of Industrial Engineering and Operations Research, Columbia University, New York NY 10027. [email protected] Brian Y. Lu Dept. of Industrial Engineering and Operations Research, Columbia University, New York NY 10027. [email protected] 2 P. Awasthi, V. Goyal and B. Lu tion provides nearly the best efficient approximation for the two-stage adjustable robust problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Linear Matrix Inequality (LMI) Approach to Robust Model Predictive Control (RMPC) Design in Nonlinear Uncertain Systems Subjected to Control Input Constraint

In this paper, a robust model predictive control (MPC) algorithm is addressed for nonlinear uncertain systems in presence of the control input constraint. For achieving this goal, firstly, the additive and polytopic uncertainties are formulated in the nonlinear uncertain systems. Then, the control policy can be demonstrated as a state feedback control law in order to minimize a given cost funct...

متن کامل

Design of An Integrated Robust Optimization Model for Closed-Loop Supply Chain and supplier and remanufacturing subcontractor selection

The development of optimization and mathematical models for closed loop supply chain (CLSC) design has attracted considerable interest over the past decades. However, the uncertainties that are inherent in the network design are challenging the capabilities of the developed tools. In CLSC Uncertainty in demand is major source of uncertainty. The aim of this paper, therefore, is to present a Rob...

متن کامل

On the Power of Robust Solutions in Two-Stage Stochastic and Adaptive Optimization Problems

We consider a two-stage mixed integer stochastic optimization problem and show that a static robust solution is a good approximation to the fully adaptable two-stage solution for the stochastic problem under fairly general assumptions on the uncertainty set and the probability distribution. In particular, we show that if the right-hand side of the constraints is uncertain and belongs to a symme...

متن کامل

Piecewise static policies for two-stage adjustable robust linear optimization problems under uncertainty

In this paper, we consider two-stage adjustable robust linear optimization problems under uncertain constraints and study the performance of piecewise static policies. These are a generalization of static policies where we divide the uncertainty set into several pieces and specify a static solution for each piece. We show that in general there is no piecewise static policy with a polynomial num...

متن کامل

A tight characterization of the performance of static solutions in two-stage adjustable robust linear optimization

In this paper, we study the performance of static solutions for twostage adjustable robust linear optimization problems with uncertain constraint and objective coefficients and give a tight characterization of the adaptivity gap. Computing an optimal adjustable robust optimization problem is often intractable since it requires to compute a solution for all possible realizations of uncertain par...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015